
UDC 547.859'873

Yu. A. Azev, E. O. Sidorov, and I. I. Mudretsova

We have found that in the reaction of equimolar amounts of 2,3,5,6,7,8-hexahydro-6,8dimethylpyrimido[5,4-e][1,2,4]triazine-3,5,7-trione (phervenulin-3-one) (I) and o-phenylenediamines IIa, b in boiling ethanol for 3 h in the presence of hydrochloric acid, 8a-derivatives of phervenulin-3-one hydrochloride IIIa, b form. Treatment of aqueous solutions of these hydrochlorides with sodium acetate can yield the free bases IIIa, b . The yield of 1,2,3,5,6, 7,8,8a-octahydro-6,8-dimethyl-8a-(3,4-diaminophenyl)pyrimido[5,4-e][1,2,4]triazine-3,5,7trione (IIIa) is 55-60%, mp 270-272°.

PMR spectrum (DMSO-D₆): 3.08 (s, N-CH₃); 3.28 (s, N-CH₃); 4.59 (br. s, 1- and 2-NH₂); 6.33 (d.d, 6'-H, $J_{6's'} = 8.2 \text{ Hz}$, $J_{6'2'} = 2.2 \text{ Hz}$); 6.43 (d, 2'-H, $J_{2'6'} = 2.2 \text{ Hz}$); 6.51 (d, 5-H, $J_{5'6'} = 8.2 \text{ Hz}$); 7.80 (d, 1-NH, $J_{12} = 1.90 \text{ Hz}$); 9.84 ppm (d, 2-NH, $J_{21} = 1.90 \text{ Hz}$). ¹³C MR spectrum (DMSO-D₆): 28.4 (N-CH₃); 29.8 (N-CH₃); 59.7 C_(8a)); 110.2 (C₍₂); 113.8 (C'₍₆)); 114.0 (C'_(5')); 125.5 (C'₍₁)); 135.1 (C_{(4a})); 136.0 (C'₍₃)); 138.5 (C'₍₄)); 149.7 (C₍₇)); 151.4 (C₍₃)); 165.9 (C₍₅)). IR spectrum (in mineral oil): 1670, 1696, 1738 (CO); 3063, 3190, 3308, 3373, 3427 cm⁻¹ (NH and NH₂). Yieled of 1,2,3,5,6,7,8,8a-octahydro-6,8-dimethyl-8a-(3,4-diamino-5-methylphenyl)pyrimido[5,4-e][1,2,4]triazine-3,5,7-trione (IIIb), 65-70%, mp 297-298°. PMR spectrum (DMSO-D₆): 1.96 (sm, CH₃); 3.00 (s, N-CH₃); 3.21 (s, N-CH₃); 4.31 (br. s, NH₂); 4.50 (br. s, NH₂); 6.24 (s, CH_{arom}); 7.83 (d, 1-NH, J₁₂ = 1.80 Hz); 9.90 ppm (d, 2-NH, J₂₁ = 1.80 Hz). IR spectrum (in mineral oil): 1685, 1696, 1742, (CO), 3056, 3158, 3193, 3395, 3428 cm⁻¹ (NH and NH₂).

4-Chloro-, 4-methyl-, 4,5-dimethyl-, and 3,6-dimethoxy-o-phenylene diamines do not add to phervenulin-3-one because of steric hindrance. In these cases 1,2,3,5,6,7,8,8a-octahydro-6,8-dimethyl-8a-ethoxypyrimido[5,4-e][1,2,4]triazine-3,5,7-trione (IV) was isolated from the reaction mixture in 65-70% yield; heating it at 153° for 3-4 h gives phervenulin-3-one in quantitative yield. PMR spectrum of IV (DMSO-D₆): 1.06 (t, CH₃, J = 6.7 Hz); 3.11 (s, N-CH₃); 3.21 (s, N-CH₃); 3.37 (q, CH₂, J = 6.7 Hz); 8.78 (d, 1-NH, J = 1.90 Hz); 10.55 ppm (d, 2-NH, J= 1.90 Hz). The C(sa) signal in the ¹³C NMR spectrum appears at 58.2 ppm. IR spectrum (in mineral oil): 1686, 1699, 1710, 1742 (CO), 3100, 3150, 3235, 3310 cm⁻¹ (NH).

In the absence of acid, formation of III was not observed. Apparently because of salt formation, acid not only activates phervenulin-3-one with respect to nucleophiles, but also determines the orientation of the o-phenylenediamine molecule in the reaction.

This reaction, which is the first example of nucleophile addition at the nodal $C_{(8a)}$ atom in pyrimidotriazine antibiotics, opens up a new route to the modification of these compounds.

S. M. Kirov Ural Polytechnic Institute, Sverdlovsk 620002. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 12, pp. 1692-1693, December, 1985. Original article submitted June 4, 1985.